머신러닝 프로젝트의 구조를 분석하고 최고의 성과로 연결하는 법
자동 테스트, 리팩터링, MLOps와 협업 기술까지
제품 개발 및 관리 노하우와 팀 운영 전략을 모두 담았다!
ML 모델을 훈련시키는 기술은 이미 많은 조직에 보편화되었지만, 이를 실제 고객에게 가치를 전달하는 제품으로 연결하는 일은 여전히 쉽지 않습니다. 모델이 배포되지 못한 채 PoC 단계에 머물고, 수개월의 개발 끝에도 성능 저하, 기술 부채, 팀 간 충돌로 프로젝트 자체가 좌초되기도 합니다.
이 책은 그런 현실적인 문제를 해결하는 실용적인 방법을 제시합니다. 단순한 알고리즘이나 도구 사용법이 아닌, 팀이 어떻게 제품을 기획하고, 협업하고, 지속적으로 개선해 나가는지를 실질적으로 다룹니다. MLOps와 CI/CD부터 자동 테스트, 컨테이너 환경 구성, 팀 내 협업 구조까지, 단순히 ‘ML을 잘하는 법’을 넘어서 ‘ML 팀이 어떻게 일해야 하는가’에 대한 근본적인 질문에 답합니다. ML 기술을 넘어 팀, 문화, 프로세스, 조직 전략까지 함께 고민하는 모든 이에게 이 책을 자신 있게 추천합니다.
주요 내용
CHAPTER 01 ML 솔루션 제공의 도전과 더 나은 방향
_1.1 ML을 향한 기대와 현실
_1.2 시스템 사고와 린의 활용 방안
_1.3 결론
[PART 01 제품과 전달]
CHAPTER 02 ML 팀을 위한 제품과 전달 기법
_2.1 ML 제품 발견
_2.2 개시: 팀의 성공을 위한 준비
_2.3 제품 전달
_2.4 결론
[PART 02 엔지니어링]
CHAPTER 03 효과적인 의존성 관리: 원칙과 도구
_3.1 코드가 어디서나 항상 작동한다면 어떨까요?
_3.2 도커와 batect에 대한 간단한 소개
_3.3 결론
CHAPTER 04 실무에서의 효과적인 의존성 관리
_4.1 ML 개발 워크플로
_4.2 안전한 종속성 관리
_4.3 결론
CHAPTER 05 자동 테스트: 신속하게 진행하되 문제는 피하기
_5.1 자동 테스트: 빠르고 안정적으로 반복하기 위한 기본 요소
_5.2 ML 시스템을 위한 포괄적인 테스트 전략의 구성 요소
_5.3 소프트웨어 테스트
_5.4 결론
CHAPTER 06 자동 테스트: ML 모델 테스트
_6.1 모델 테스트
_6.2 모델 테스트에 필수적인 보완 기법
_6.3 다음 단계: 배운 것을 적용하기
_6.4 결론
CHAPTER 07 간단한 기술로 코드 에디터를 효과적으로 사용하기
_7.1 IDE를 아는 것의 이점(그리고 놀라운 단순성)
_7.2 계획: 두 단계로 생산성 높이기
_7.3 결론
CHAPTER 08 리팩터링과 기술 부채 관리
_8.1 기술 부채: 자동차 기어 속 모래
_8.2 노트북(또는 문제가 있는 코드베이스) 리팩터링 방법
_8.3 현실에서의 기술 부채 관리
_8.4 결론
CHAPTER 09 MLOps와 ML을 위한 지속적 전달(CD4ML)
_9.1 MLOps의 강점과 부족한 퍼즐 조각들
_9.2 ML을 위한 지속적 전달(CD4ML)
_9.3 CD4ML이 ML 거버넌스와 책임 있는 AI를 지원하는 방법
_9.4 결론
[PART 03 팀]
CHAPTER 10 효율적인 ML 팀의 구성 요소
_10.1 ML 팀이 직면하고 있는 공통적인 문제
_10.2 효율적인 팀의 내부 구성 요소
_10.3 엔지니어링 효율성을 통한 흐름 개선
_10.4 결론
CHAPTER 11 효과적인 ML 조직
_11.1 ML 조직이 직면한 일반적인 과제
_11.2 팀 단위에서의 효과적인 조직 구성
_11.3 효과적인 리더십
_11.4 결론
최고의 성과를 내는 머신러닝 팀의 비결을 파헤치다!
수많은 머신러닝(ML) 프로젝트가 PoC 단계에 머물거나 성능 저하, 팀 간 갈등으로 인해 좌초되는 현실 속에서, 이 책은 단순한 기술적 해결책을 넘어 팀 운영과 협업 전략을 중심으로 문제 해결의 길을 제시합니다. ML 모델 개발, 제품화, 배포, 지속 개선까지 전 과정을 아우르며, 실제 프로젝트 현장에서 유용하게 활용할 수 있는 실질적 방법론을 담고 있습니다.
LLM(대규모 언어 모델)이 자동화를 촉진하고 강력한 기반 모델을 제공하면서, ML과 AI 프로젝트에도 많은 변화가 생겼습니다. 하지만 LLM은 모든 문제를 해결할 수 있는 만능 도구는 아니며, 전통적인 ML/DL 기법이 여전히 더 적합한 경우도 많습니다. 또한 LLM을 효과적으로 활용하려면 단순히 API 호출을 넘어, 프롬프트 엔지니어링, 파인튜닝, RAG(검색 증강 생성) 시스템 구축, 결과 검증과 평가 등 높은 수준의 전문성과 관리가 필요합니다. 이러한 복잡한 작업을 효과적으로 수행하려면 여전히 전통적인 ML 팀 운영 원칙과 체계적인 엔지니어링 접근법이 필수적입니다.
이 책은 이러한 변화 속에서도 ML 팀뿐 아니라 AI 프로젝트를 담당하는 팀까지 지속적으로 성과를 낼 수 있도록, MLOps, CI/CD, 자동 테스트 등 최신 엔지니어링 기법부터 린 원칙을 기반으로 한 구체적인 실무 전략, 팀 협업 전략까지 설명합니다. 복잡한 문제를 구조적으로 접근하여 성과를 극대화하고 싶은 모든 실무자와 리더에게 이 책을 추천합니다.
예약판매 안내
온라인 주문시 "2025-05-30 출고" 예상(출고 후 1~2일 이내 수령) - 내부 사정으로 출시가 지연될 수 있습니다.
구매한 도서중 예약도서가 포함되어 있을 경우, 예약도서 출고일에 함께 배송됩니다.